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Outline

• Margin concept

• Hard-Margin SVM
• Dual Problem of Hard-Margin SVM

• Soft-Margin SVM
• Dual Problem of Soft-Margin SVM

2 SVM



Sharif University

of Technology33
Sharif University

of Technology333 SVM

Hyperplanes
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Hyperplanes

Geometrical interpretation 
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halfspaces
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Margin

• Which line is better to select as the boundary to provide more 
generalization capability?

• Margin for a hyperplane that separates samples of two linearly 
separable classes is:

• The smallest distance between the decision boundary and any of the 
training samples

6

𝑥2

𝑥1

Larger margin provides better 

generalization to unseen data

SVM



Sharif University

of Technology77
Sharif University

of Technology777 SVM

Maximum Margin Hyperplanes

• Find a linear hyperplane (decision boundary) that will separate the data
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Maximum Margin Hyperplanes

• One Possible Solution

B
1
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Maximum Margin Hyperplanes

• Another possible solution

B
2
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Maximum Margin Hyperplanes

• Other possible solutions

B
2
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Maximum Margin Hyperplanes

• Which one is better? B1 or B2?

• How do you define better?

B
1

B
2
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Maximum Margin Hyperplanes

• Find hyperplane maximizes the margin => B1 is better than B2

• Generalization error

B
1

B
2

b
11

b
12

b
21

b
22

margin
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Maximum margin

• SVM finds the solution with maximum margin

• Solution: a hyperplane that is farthest from all training samples

• The hyperplane with the largest margin has equal distances to the nearest 
sample of both classes 

13

𝑥2

𝑥1

𝑥2

𝑥1 Larger margin

SVM
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Linear SVM: Separable Case

A linear SVM is a classifier that searches for a hyperplane with the largest margin

decision boundary of a linear classifier

w and b are parameters of the model
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Distance between an 𝒙(𝑛) and the plane 

distance =
𝒘𝑇𝒙(𝑛) + 𝑤0

𝒘

15

𝒙(𝑛)

distance ×
𝒘

𝒘

SVM
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Hard-margin SVM: Optimization problem

max
𝑀,𝒘,𝑤0

2𝑀

𝒘

s. t. 𝒘𝑇𝒙 𝑖 + 𝑤0 ≥ 𝑀 ∀𝒙 𝑖 ∈ 𝐶1

𝒘𝑇𝒙 𝑖 + 𝑤0 ≤ −𝑀 ∀𝒙 𝑖 ∈ 𝐶2

16

𝑥2

𝑥1

𝑀

𝒘

𝒘𝑇𝒙 + 𝑤0 = 0

𝒘𝑇𝒙 + 𝑤0 = 𝑀

𝒘𝑇𝒙 + 𝑤0 = −𝑀

𝒘

𝑦 𝑖 = 1

𝑦 𝑖 = −1

Margin: 2
𝑀

𝒘

SVM
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Hard-margin SVM: Optimization problem

max
𝑀,𝒘,𝑤0

2𝑀

𝒘

s. t. 𝑦(𝑖) 𝒘𝑇𝒙 𝑖 + 𝑤0 ≥ 𝑀 𝑖 = 1,… ,𝑁

17

𝑥2

𝑥1

𝑀

𝒘

𝒘

𝒘𝑇𝒙 + 𝑤0 = 0

𝒘𝑇𝒙 + 𝑤0 = 𝑀

𝒘𝑇𝒙 + 𝑤0 = −𝑀

𝑀 = min
𝑖=1,…,𝑁

𝑦 𝑖 𝒘𝑇𝒙 𝑖 + 𝑤0

SVM
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Linear SVM: Separable Case

B
1

b
11

b
12
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Linear SVM: Separable Case

B
1

b
11

b
12

margin of the decision boundary 

is given by the distance between 

these two hyperplanes
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Hard-margin SVM: Optimization problem

max
𝒘,𝑤0

2

𝒘

s. t. 𝒘𝑇𝒙 𝑛 + 𝑤0 ≥ 1 ∀𝑦 𝑛 = 1

𝒘𝑇𝒙 𝑛 + 𝑤0 ≤ −1 ∀𝑦 𝑛 = −1

20

𝑥2

𝑥1

1

𝒘

𝒘𝑇𝒙 + 𝑤0 = 0

𝒘𝑇𝒙 + 𝑤0 = 1

𝒘𝑇𝒙 + 𝑤0 = −1
𝒘

Margin: 
2

𝒘

SVM

We can set 𝒘′ =
𝒘

𝑀
, 𝑤0

′ =
𝑤0

𝑀
:
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Hard-margin SVM: Optimization problem

max
𝒘′,𝑤0

′

2

𝒘′

s. t. 𝑦(𝑖) 𝒘′𝑇𝒙 𝑖 + 𝑤0
′ ≥ 1 𝑖 = 1,… ,𝑁

21

𝑥2

𝑥1

1

𝒘′

𝒘′𝑇𝒙 + 𝑤0
′ = 0

𝒘′𝑇𝒙 + 𝑤0
′ = 1

𝒘′𝑇𝒙 + 𝑤0
′ = −1

𝒘′

The place of boundary and 

margin lines do not change 

SVM
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Hard-margin SVM: Optimization problem

max
𝒘,𝑤0

2

𝒘

s. t. 𝑦(𝑖) 𝒘𝑇𝒙 𝑖 + 𝑤0 ≥ 1 , 𝑛 = 1,… ,𝑁

22

𝑥2

𝑥1

1

𝒘

𝒘𝑇𝒙 + 𝑤0 = 0

𝒘𝑇𝒙 + 𝑤0 = 1

𝒘𝑇𝒙 + 𝑤0 = −1
𝒘

Margin: 
2

𝒘

SVM
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SVM

For Solving constrained optimization problem (like SVM Optimization) there exist Numerical 

approaches like Quadratic Programming (QP) !



Sharif University

of Technology2424
Sharif University

of Technology242424 SVM

min
𝒙

1

2
𝒙𝑇𝑸𝒙 + 𝒄𝑇𝒙

s. t. 𝑨𝒙 ≤ 𝒃
𝑬𝒙 = 𝒅

It is a convex Quadratic Programming (QP) problem

There are computationally efficient packages to solve it. 

It has a global minimum (if any).

Quadratic Programming (QP)
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Dual formulation of the SVM

• We are going to introduce the dual SVM problem 
which is equivalent to the original primal problem. 
The dual problem:
• is often easier

• It’s computationally more feasible in high 
dimensional spaces where d is large

• gives us further insights into the optimal hyper-plane

• enable us to exploit the kernel trick

25 SVM
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Optimization: Lagrangian multipliers

𝑝∗ = min
𝒙

𝑓(𝒙)

s. t. 𝑔𝑖 𝒙 ≤ 0 𝑖 = 1,… ,𝑚
ℎ𝑖 𝒙 = 0 𝑖 = 1,… , 𝑝

26 SVM
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Optimization: Lagrangian multipliers

𝑝∗ = min
𝒙

𝑓(𝒙)

s. t. 𝑔𝑖 𝒙 ≤ 0 𝑖 = 1,… ,𝑚
ℎ𝑖 𝒙 = 0 𝑖 = 1,… , 𝑝

ℒ 𝒙, 𝜶, 𝝀 = 𝑓 𝒙 +෍

𝑖=1

𝑚

𝛼𝑖 𝑔𝑖 𝒙 +෍

𝑖=1

𝑝

𝜆𝑖 ℎ𝑖 𝒙

27

Lagrangian multipliers

SVM
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Optimization: Lagrangian multipliers

𝑝∗ = min
𝒙

𝑓(𝒙)

s. t. 𝑔𝑖 𝒙 ≤ 0 𝑖 = 1,… ,𝑚
ℎ𝑖 𝒙 = 0 𝑖 = 1,… , 𝑝

ℒ 𝒙, 𝜶, 𝝀 = 𝑓 𝒙 +෍

𝑖=1

𝑚

𝛼𝑖 𝑔𝑖 𝒙 +෍

𝑖=1

𝑝

𝜆𝑖 ℎ𝑖 𝒙

max
𝛼𝑖≥0 , 𝜆𝑖

ℒ 𝒙, 𝜶, 𝝀 = ൞

∞ any 𝑔𝑖 𝒙 > 0

∞ any ℎ𝑖 𝒙 ≠ 0

𝑓 𝒙 otherwise

𝑝∗ = min
𝒙

max
𝛼𝑖≥0 , 𝜆𝑖

ℒ 𝒙, 𝜶, 𝝀

28

Lagrangian multipliers

𝜶 = 𝛼1, … , 𝛼𝑚
𝝀 = [𝜆1, … , 𝜆𝑝]

SVM
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Optimization: Dual problem 

• In general, we have:
max
𝑥

min
𝑦

ℎ(𝑥, 𝑦) ≤ min
𝑦

max
𝑥

ℎ(𝑥, 𝑦)

• Primal problem:   𝑝∗ = min
𝒙

max
𝛼𝑖≥0 , 𝜆𝑖

ℒ 𝒙, 𝜶, 𝝀

• Dual problem:    𝑑∗ = max
𝛼𝑖≥0 , 𝜆𝑖

min
𝒙

ℒ 𝒙, 𝜶, 𝝀

• Obtained by swapping the order of min and max

• 𝑑∗ ≤ 𝑝∗

• When the original problem is convex (𝑓 and 𝑔 are convex 
functions and ℎ is affine), we have strong duality 𝑑∗ = 𝑝∗

29 SVM
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Hard-margin SVM: Dual problem

min
𝒘,𝑤0

1

2
𝒘 2

s. t. 𝑦 𝑖 𝒘𝑇𝒙 𝑖 +𝑤0 ≥ 1 𝑖 = 1,… , 𝑁

• By incorporating the constraints through Lagrangian
multipliers, we will have:

min
𝒘,𝑤0

max
{𝛼𝑛≥0}

1

2
𝒘 2 +෍

𝑛=1

𝑁

𝛼𝑛 1 − 𝑦 𝑛 (𝒘𝑇𝒙(𝑛) + 𝑤0)

30 SVM
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Hard-margin SVM: Dual problem

min
𝒘,𝑤0

1

2
𝒘 2

s. t. 𝑦 𝑖 𝒘𝑇𝒙 𝑖 + 𝑤0 ≥ 1 𝑖 = 1,… ,𝑁

• By incorporating the constraints through Lagrangian multipliers, we will 
have:

min
𝒘,𝑤0

max
{𝛼𝑛≥0}

1

2
𝒘 2 +෍

𝑛=1

𝑁

𝛼𝑛 1 − 𝑦 𝑛 (𝒘𝑇𝒙(𝑛) + 𝑤0)

• Dual problem (changing the order of min and max in the above problem):

max
{𝛼𝑛≥0}

min
𝒘,𝑤0

1

2
𝒘 2 +෍

𝑛=1

𝑁

𝛼𝑛 1 − 𝑦 𝑛 (𝒘𝑇𝒙(𝑛) +𝑤0)

31 SVM



Sharif University

of Technology3232
Sharif University

of Technology3232

Hard-margin SVM: Dual problem

max
{𝛼𝑛≥0}

min
𝒘,𝑤0

ℒ 𝒘,𝑤0, 𝜶

ℒ 𝒘,𝑤0, 𝜶 =
1

2
𝒘 2 +෍

𝑛=1

𝑁

𝛼𝑛 1 − 𝑦 𝑛 (𝒘𝑇𝒙(𝑛) + 𝑤0)

32 SVM
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Hard-margin SVM: Dual problem

max
{𝛼𝑛≥0}

min
𝒘,𝑤0

ℒ 𝒘,𝑤0, 𝜶

ℒ 𝒘,𝑤0, 𝜶 =
1

2
𝒘 2 +෍

𝑛=1

𝑁

𝛼𝑛 1 − 𝑦 𝑛 (𝒘𝑇𝒙(𝑛) + 𝑤0)

• 𝛻𝒘ℒ 𝒘,𝑤0, 𝜶 = 0 ⇒ 𝒘−σ𝑛=1
𝑁 𝛼𝑛𝑦

𝑛 𝒙 𝑛 = 𝟎

• ⇒ 𝒘 = σ𝑛=1
𝑁 𝛼𝑛𝑦

𝑛 𝒙 𝑛

33 SVM
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Hard-margin SVM: Dual problem

max
{𝛼𝑛≥0}

min
𝒘,𝑤0

ℒ 𝒘,𝑤0, 𝜶

ℒ 𝒘,𝑤0, 𝜶 =
1

2
𝒘 2 +෍

𝑛=1

𝑁

𝛼𝑛 1 − 𝑦 𝑛 (𝒘𝑇𝒙(𝑛) + 𝑤0)

• 𝛻𝒘ℒ 𝒘,𝑤0, 𝜶 = 0 ⇒ 𝒘−σ𝑛=1
𝑁 𝛼𝑛𝑦

𝑛 𝒙 𝑛 = 𝟎

• ⇒ 𝒘 = σ𝑛=1
𝑁 𝛼𝑛𝑦

𝑛 𝒙 𝑛

•
𝜕ℒ 𝒘,𝑤0,𝜶

𝜕𝑤𝟎
= 0 ⇒ −σ𝑛=1

𝑁 𝛼𝑛𝑦
(𝑛) = 0

34

𝑤0 do not appear, instead, a “global” constraint 

on 𝜶 is created.

SVM
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Substituting 

In the Largrangian

ℒ 𝒘,𝑤0, 𝜶 =
1

2
𝒘𝑇𝒘+෍

𝑛=1

𝑁

𝛼𝑛 1 − 𝑦 𝑛 (𝒘𝑇𝒙(𝑛) +𝑤0)

35

𝒘 = ෍

𝑛=1

𝑁

𝛼𝑛𝑦
𝑛 𝒙 𝑛 ෍

𝑛=1

𝑁

𝛼𝑛𝑦
(𝑛) = 0

SVM
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Substituting 

In the Largrangian

ℒ 𝒘,𝑤0, 𝜶 =
1

2
𝒘𝑇𝒘+෍

𝑛=1

𝑁

𝛼𝑛 1 − 𝑦 𝑛 (𝒘𝑇𝒙(𝑛) +𝑤0)

We get

ℒ 𝜶 =෍
𝑛=1

𝑁

𝛼𝑛 −
1
2
෍
𝑛=1

𝑁

෍
𝑚=1

𝑁

𝛼𝑛𝛼𝑚𝑦(𝑛)𝑦(𝑚)𝒙 𝑛 𝑇
𝒙 𝑚

36

𝒘 = ෍

𝑛=1

𝑁

𝛼𝑛𝑦
𝑛 𝒙 𝑛 ෍

𝑛=1

𝑁

𝛼𝑛𝑦
(𝑛) = 0

Maximize w.r.t. 𝜶 subject to 𝛼𝑛 ≥ 0 for 𝑛 = 1,… , 𝑁 and σ𝑛=1
𝑁 𝛼𝑛𝑦

(𝑛) = 0

SVM
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Hard-margin SVM: Dual problem

max
𝜶

෍
𝑛=1

𝑁

𝛼𝑛 −
1

2
෍

𝑛=1

𝑁

෍

𝑚=1

𝑁

𝛼𝑛𝛼𝑚𝑦
(𝑛)𝑦(𝑚)𝒙 𝑛 𝑇

𝒙 𝑚

• Subject to    σ𝑛=1
𝑁 𝛼𝑛𝑦

(𝑛) = 0

• 𝛼𝑛 ≥ 0 𝑛 = 1,… ,𝑁

• It is a convex QP

37 SVM
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Solution

• Quadratic programming:

min
𝜶

1

2
𝜶𝑇

𝑦 1 𝑦 1 𝒙 1 𝑇
𝒙 1 ⋯ 𝑦 1 𝑦 𝑁 𝒙 1 𝑇

𝒙 𝑁

⋮ ⋱ ⋮

𝑦 𝑁 𝑦 1 𝒙 𝑁 𝑇
𝒙 1 ⋯ 𝑦 𝑁 𝑦 𝑁 𝒙 𝑁 𝑇

𝒙 𝑁

𝜶 + (−𝟏)𝑇𝜶

s. t. −𝜶 ≤ 𝟎
𝒚𝑇𝜶 = 𝟎

38 SVM
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Finding the hyperplane

• After finding 𝜶 by QP, we find 𝒘:

𝒘 = ෍

𝑛=1

𝑁

𝛼𝑛𝑦
𝑛 𝒙 𝑛

• How to find 𝑤0?
• we discuss it after introducing support vectors

39 SVM
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Optimal Point

• Necessary conditions for the solution [𝒘∗, 𝑤0
∗, 𝜶∗]:

• 𝛻𝒘ℒ 𝒘,𝑤0, 𝜶 ȁ𝒘∗,𝑤0
∗ ,𝜶∗ = 0

•
𝜕ℒ 𝒘,𝑤0,𝜶

𝜕𝑤0
ȁ𝒘∗,𝑤0

∗ ,𝜶∗ = 0

• 𝛼𝑛
∗ ≥ 0 𝑛 = 1,… ,𝑁

• 𝑦 𝑛 𝒘∗𝑇𝒙 𝑛 + 𝑤0
∗ ≥ 1 𝑛 = 1,… ,𝑁

• 𝛼𝑖
∗ 1 − 𝑦 𝑛 𝒘∗𝑇𝒙 𝑛 +𝑤0

∗ = 0 𝑛 = 1,… ,𝑁

40 SVM
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Optimization: Lagrangian multipliers

𝑝∗ = min
𝒙

𝑓(𝒙)

s. t. 𝑔𝑖 𝒙 ≤ 0 𝑖 = 1,… ,𝑚
ℎ𝑖 𝒙 = 0 𝑖 = 1,… , 𝑝

ℒ 𝒙, 𝜶, 𝝀 = 𝑓 𝒙 +෍

𝑖=1

𝑚

𝛼𝑖 𝑔𝑖 𝒙 +෍

𝑖=1

𝑝

𝜆𝑖 ℎ𝑖 𝒙

max
𝛼𝑖≥0 , 𝜆𝑖

ℒ 𝒙, 𝜶, 𝝀 = ൞

∞ any 𝑔𝑖 𝒙 > 0

∞ any ℎ𝑖 𝒙 ≠ 0

𝑓 𝒙 otherwise

𝑝∗ = min
𝒙

max
𝛼𝑖≥0 , 𝜆𝑖

ℒ 𝒙, 𝜶, 𝝀

41

Lagrangian multipliers

𝜶 = 𝛼1, … , 𝛼𝑚
𝝀 = [𝜆1, … , 𝜆𝑝]

SVM
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Optimal Point

• Necessary conditions for the solution [𝒘∗, 𝑤0
∗, 𝜶∗]:

• 𝛻𝒘ℒ 𝒘,𝑤0, 𝜶 ȁ𝒘∗,𝑤0
∗ ,𝜶∗ = 0

•
𝜕ℒ 𝒘,𝑤0,𝜶

𝜕𝑤0
ȁ𝒘∗,𝑤0

∗ ,𝜶∗ = 0

• 𝛼𝑛
∗ ≥ 0 𝑛 = 1,… ,𝑁

• 𝑦 𝑛 𝒘∗𝑇𝒙 𝑛 + 𝑤0
∗ ≥ 1 𝑛 = 1,… ,𝑁

• 𝛼𝑖
∗ 1 − 𝑦 𝑛 𝒘∗𝑇𝒙 𝑛 +𝑤0

∗ = 0 𝑛 = 1,… ,𝑁

43 SVM

Karush-Kuhn-Tucker 

(KKT) conditions
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Hard-margin SVM: Support vectors

• Inactive constraint: 𝑦 𝑛 𝒘𝑇𝒙 𝑛 +𝑤0 > 1

• ⇒ 𝛼𝑛 = 0 and thus 𝒙 𝑛 is not a support vector.

• Active constraint: 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 = 1

• ⇒ 𝛼𝑛 can be greater than 0 and thus 𝒙 𝑖 can be a support vector.

44

𝑥2

𝑥1

𝛼 > 0

𝛼 > 0
𝛼 > 0

𝛼 = 0

𝛼 = 0

A sample with 𝛼𝑛 > 0 can also lie on

one of the margin hyperplanes

SVM
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Hard-margin SVM: Support vectors

• Support Vectors (SVs)= {𝒙 𝑛 ȁ𝛼𝑛 > 0}

• The direction of hyper-plane can be found only based on support vectors:

𝒘 = ෍

𝛼𝑛>0

𝛼𝑛 𝑦
(𝑛)𝒙(𝑛)

45

𝑥2

𝑥1

SVM
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Finding the hyperplane

• After finding 𝜶 by QP, we find 𝒘:

𝒘 = ෍

𝑛=1

𝑁

𝛼𝑛𝑦
𝑛 𝒙 𝑛

• How to find 𝑤0?
• Each of the samples that has 𝛼𝑠 > 0 is on the margin, 

thus we solve for 𝑤0 using any of SVs:

𝑦 𝑠 𝒘𝑇𝒙 𝑠 +𝑤0 = 1

46

⇒ 𝑤0 = 𝑦 𝑠 −𝒘𝑇𝒙 𝑠

SVM
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Hard-margin SVM: Dual problem
Classifying new samples using only SVs

• Classification of a new sample 𝒙:

ො𝑦 = sign 𝑤0 +𝒘𝑇𝒙

ො𝑦 = sign 𝑤0 + ෍
𝛼𝑛>0

𝛼𝑛𝑦
𝑛 𝒙 𝑛

𝑇

𝒙

ො𝑦 = sign(𝑦(𝑠) − ෍

𝛼𝑛>0

𝛼𝑛𝑦
(𝑛)𝒙 𝑛 𝑇

𝒙(𝑠) +෍
𝛼𝑛>0

𝛼𝑛𝑦
𝑛 𝒙 𝑛 𝑇

𝒙)

• The classifier is based on the expansion in terms of dot 
products of 𝒙 with support vectors.

47

Support vectors are sufficient to 

predict labels of new samples𝑤0

SVM
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Hard-margin SVM dual problem: An 
important property

max
𝜶

෍

𝑛=1

𝑁

𝛼𝑛 −
1

2
෍

𝑛=1

𝑁

෍

𝑚=1

𝑁

𝛼𝑛𝛼𝑚𝑦
(𝑛)𝑦(𝑚)𝒙 𝑛 𝑇

𝒙 𝑚

• Subject to    σ𝑛=1
𝑁 𝛼𝑛𝑦

(𝑛) = 0

• 𝛼𝑛 ≥ 0 𝑛 = 1,… ,𝑁

• Only the dot product of each pair of training data appears in 
the optimization problem
• An important property that is helpful to extend to non-linear SVM 

• We will talk about it later (kernel-based methods)

48 SVM
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In the transformed space

max
𝜶

෍

𝑛=1

𝑁

𝛼𝑛 −
1

2
෍

𝑛=1

𝑁

෍

𝑚=1

𝑁

𝛼𝑛𝛼𝑚𝑦
𝑛 𝑦 𝑚 𝜙 𝒙 𝑛 𝑇

𝜙 𝒙 𝑚

• Subject to    σ𝑛=1
𝑁 𝛼𝑛𝑦

(𝑛) = 0

• 𝛼𝑛 ≥ 0 𝑛 = 1,… ,𝑁

49

𝜙(. )
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Beyond linear separability

• When training samples are not linearly separable, it has no 
solution.

• How to extend it to find a solution even though the classes 
are not exactly linearly separable.

50 SVM
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Near linear separability

• How to extend the hard-margin SVM to allow 
classification error
• Overlapping classes that can be approximately separated 

by a linear boundary

• Noise in the linearly separable classes

51

𝑥2

𝑥1

𝑥1

SVM
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Near linear separability: Soft-margin SVM

• Minimizing the number of misclassified points?!
• NP-complete

• Soft margin: 
• Maximizing a margin while trying to minimize the 

distance between misclassified points and their correct 
margin plane 

52 SVM
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Error measure

• Margin violation amount 𝜉𝑛 (𝜉𝑛 ≥ 0):

• 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 ≥ 1 − 𝜉𝑛

• Total violation:  σ𝑛=1
𝑁 𝜉𝑛

53 SVM
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Soft-margin SVM: Optimization problem 

• SVM with slack variables: allows samples to fall within the margin, but 
penalizes them

min
𝒘,𝑤0, 𝜉𝑛 𝑛=1

𝑁

1

2
𝒘 2 + 𝐶෍

𝑛=1

𝑁

𝜉𝑛

s. t. 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 ≥ 1 − 𝜉𝑛 𝑛 = 1,… , 𝑁

𝜉𝑛 ≥ 0

54

𝜉𝑛: slack variables

0 < 𝜉𝑛 < 1: if 𝒙 𝑛 is correctly classified

but inside margin

𝜉𝑛 > 1: if 𝒙 𝑛 is misclassifed

𝑥2

𝑥1

𝜉 < 1

𝜉 > 1

SVM
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Soft-margin SVM

• linear penalty (hinge loss) for a sample if it is misclassified or 
lied in the margin
• tries to maintain 𝜉𝑛 small while maximizing the margin.

• always finds a solution (as opposed to hard-margin SVM)

• more robust to the outliers

• Soft margin problem is still a convex QP

55 SVM
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Soft-margin SVM: Parameter 𝐶

• 𝐶 is a tradeoff parameter:
• small 𝐶 allows margin constraints to be easily ignored 

• large margin

• large 𝐶 makes constraints hard to ignore
• narrow margin

• 𝐶 → ∞ enforces all constraints: hard margin

• 𝐶 can be determined using a technique like cross-
validation
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Soft-margin SVM: Cost function

min
𝒘,𝑤0, 𝜉𝑛 𝑛=1

𝑁

1

2
𝒘 2 + 𝐶෍

𝑛=1

𝑁

𝜉𝑛

s. t. 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 ≥ 1 − 𝜉𝑛 𝑛 = 1,… ,𝑁

𝜉𝑛 ≥ 0

• It is equivalent to the unconstrained optimization problem:

min
𝒘,𝑤0

1

2
𝒘 2 + 𝐶෍

𝑛=1

𝑁

max(0,1 − 𝑦(𝑛)(𝒘𝑇𝒙(𝑛) + 𝑤0))
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SVM loss function

• Hinge loss vs. 0-1 loss

58

𝒘𝑇𝒙 + 𝑤0

0-1 Loss

𝑦 = 1

Hinge Loss

max(0,1 − 𝑦(𝒘𝑇𝒙 + 𝑤0))

SVM
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Lagrange formulation

ℒ 𝒘,𝑤0, 𝝃, 𝜶, 𝜷

=
1

2
𝒘 2 + 𝐶෍

𝑛=1

𝑁

𝜉𝑛 +෍
𝑛=1

𝑁

𝛼𝑛 1 − 𝜉𝑛 − 𝑦 𝑛 (𝒘𝑇𝒙(𝑛) + 𝑤0)

−෍
𝑛=1

𝑁

𝛽𝑛𝜉𝑛

• Minimize w.r.t. 𝒘, 𝑤0, 𝝃 and maximize w.r.t. 𝛼𝑛 ≥ 0 and 𝛽𝑛 ≥ 0

59

min
𝒘,𝑤0, 𝜉𝑛 𝑛=1

𝑁

1

2
𝒘 2 + 𝐶෍

𝑛=1

𝑁

𝜉𝑛

s. t. 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 ≥ 1 − 𝜉𝑛 𝑛 = 1,… ,𝑁

𝜉𝑛 ≥ 0

SVM
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Lagrange formulation

• ℒ 𝒘,𝑤0, 𝝃, 𝜶, 𝜷 =
1

2
𝒘 2 + 𝐶σ𝑛=1

𝑁 𝜉𝑛 + σ𝑛=1
𝑁 𝛼𝑛൫1 − 𝜉𝑛
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Soft-margin SVM: Dual problem

max
𝜶

෍

𝑛=1

𝑁

𝛼𝑛 −
1

2
෍

𝑛=1

𝑁

෍

𝑚=1

𝑁

𝛼𝑛𝛼𝑚𝑦
(𝑛)𝑦(𝑚)𝒙 𝑛 𝑇

𝒙 𝑚

• Subject to    σ𝑛=1
𝑁 𝛼𝑛𝑦

(𝑛) = 0

• 0 ≤ 𝛼𝑛 ≤ 𝐶 𝑛 = 1,… ,𝑁

• After solving the above quadratic problem, 𝒘 is find 
as:

𝒘 = ෍

𝑛=1

𝑁

𝛼𝑛 𝑦
(𝑛)𝒙(𝑛)
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Soft-margin SVM: Support vectors

• Support Vectors: 𝛼𝑛 > 0
• If 0 < 𝛼𝑛 < 𝐶 (margin support vector)

• If 𝛼 = 𝐶 (non-margin support vector)

62

𝐶 − 𝛼𝑛 − 𝛽𝑛 = 0

SVs on the margin

SVs on or over the margin

𝑦 𝑛 𝒘𝑇𝒙 𝑛 +𝑤0 = 1 (𝜉𝑛 = 0)

𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 < 1 (𝜉𝑛 > 0)

SVM
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SVM: Summary

• Hard margin: maximizing margin 

• Soft margin: handling noisy data and overlapping classes
• Slack variables in the problem

• Dual problems of hard-margin and soft-margin SVM
• Classifier decision in terms of support vectors

• Dual problems lead us to non-linear SVM method easily by 
kernel substitution

63 SVM
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Recourses

• C. Bishop, “Pattern Recognition and Machine Learning”, Chapter 7.1.

• Yaser S. Abu-Mostafa, et al., “Learning from Data”, Chapter 8.

• Course CE-717, Dr. M.Soleymani

• Course cs231n, Fei Fei Li, Stanford 2017.
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